
TD n°2: Fonctions holomorphes et équations de Cauchy-Riemann
Analyse complexe 2025-2026, Thomas Serafini

tserafini@dma.ens.fr

Les exercices marqués d’un † sont à faire en priorité, ceux marqués d’un † sont des exercices complémen-
taires, à faire pour aller plus loin.

Quelques fonctions holomorphes
Exercice 1. Le logarithme complexe.
On définit la série entière

log(1 + z) =
∑
n≥1

(−1)n+1

n
zn.

1. Démontrer l’égalité de séries entières

exp(log(1 + z)) = 1 + z.

C’est une conséquence des règles de composition des développements limités. Pour une preuve plus self-
contained, on peut dériver exp(log(1+z))

1+z . D’abord, on observe que la dérivée de log(1 + z) est 1
1+z , puis

on calcule

∂

∂z

(
1

1 + z
exp(log(1 + z))

)
=

1

1 + z
· exp(log(1 + z))

(1 + z)
− 1

(1 + z)2
exp(log(1 + z)) = 0.

Par conséquent, exp(log(1 + z)) = C(1 + z) pour une constante C. En considérant les termes constants,
on trouve que C = 1.

2. Soit z0 ∈ C∗ et w0 ∈ C tel que ew0 = z0. Démontrer que la série entière

Lw0
(z) = w0 + log

(
1 +

z − z0
z0

)
définit une fonction analytique sur D(z0, |z0|) qui vérifie eLw0

(z) = z.
Comme log(1+z) converge sur D(0, 1), la série entière log

(
1 + z−z0

z0

)
converge pour |z−z0| 6 |z0|, donc

sur D(z0, |z0|). Pour l’égalité eLw0
(z) = z, on part du fait que exp(log(1 + z)) = 1 + z en tant que séries

entières, donc exp(log(1 + z)) = 1 + z pour tout |z| < 1. Par conséquent,

eLw0
(z) = ew0 ·

(
1 +

z − z0
z

)
= z0 + z − z0 = z.

3. On appelle détermination locale du logarithme sur un ouvert U une fonction L : U → C vérifiant eL(z) = z
pour tout z.

(a) Soit U un ouvert connexe de C∗ et f, g : U → C deux déterminations continues du logarithme.
Démontrer que f − g est constante à 2ikπ.
On vérifie que exp(f(z) − g(z)) = exp(f(z))/ exp(g(z)) = z/z = 1. Ainsi, f − g est à valeur dans
2iπZ. Etant continue, elle est constante.

(b) En déduire que toute détermination continue du logarithme est holomorphe.
Soit L une détermination du logarithme sur U connexe. L’holomorphie est une propriété locale
soit a ∈ U , et D un disque contenu dans U centré en a : on va prouver que L est holomorphe sur
U . Comme 0 /∈ U , le rayon de D est inférieur à |a| et par conséquent il existe une détermination
holomorphe du logarithme au voisinage de a : on choisit b tel que eb = a et on considère Lb. En
appliquant la question précédente à l’ouvert D, on trouve que Lb et L diffèrent d’une constante sur
D, et donc L est holomorphe sur D, ce qui conclut.

†Merci à Hadrien et Louise pour ce phoque et ce raton-laveur en Tikz.
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4. Soit L une détermination du logarithme sur un ouvert U . Démontrer que <L(z) = log |z| et que =L(z)
est une détermination de l’argument sur U .
On observe que |ew| = e<(w). Par conséquent, |z| = |eL(z)| = e<L(z), donc <L(z) = log |z|. On en déduit
également que ei=L(z) = z

|z| , donc =L(z) est un argument de z.

Exercice 2. La sphère de Riemann comme espace projectif et l’action de PGL2.
On note CP1 l’ensemble des droites complexes dans C2. Si (u, v) ∈ C2 est non nul, on note [u : v] la droite
qu’il engendre, et on a [λu : λv] = [u : v] pour λ ∈ C∗.

1. Vérifier que C s’injecte dans CP1 en envoyant z sur [z : 1].
Si [z : 1] = [z′ : 1] alors z/1 = z′/1.

2. Vérifier que CP1 \ C est réduit à un point, la droite [1 : 0], que l’on note ∞.
Si (u, v) ∈ C2 \ {0}, alors soit v 6= 0 auquel cas [u : v] = [u/v : 1], soit v = 0, auquel cas [u : v] = [u :
0] = [1 : 0].
Ainsi, CP1 s’identifie naturellement au compactifié d’Alexandroff du plan : la sphère. On le munit de
cette topologie. Si U ⊆ CP1 est un ouvert contenant l’infini et f : U → C est une fonction, on dit que
f est holomorphe si elle est holomorphe au voisinage de tout point non-infini et si z 7→ f([1 : z]) est
holomorphe au voisinage de zéro (moralement, z 7→ f(1/z) est holomorphe au voisinage de zéro). Si
f : U → CP1 est une fonction, on dit qu’elle est holomorphe si elle est de la forme [u(z) : v(z)] avec u, v
fonctions holomorphes.

3. Dessiner RP1, le disque unité et le demi-plan de Poincaré sur CP1.
Pour fixer les idées, disons que ∞ est le pôle nord et 0 est le pôle sud. Alors RP1 est un grand cercle
qui passe par 0 et ∞, le disque unité est l’hémisphère sud de la sphère, et le demi-plan de Poincaré est
un des deux hémisphères (celui qui contient i, au choix) délimités par le cercle RP1. Ci-dessous, CP1 est
représenté avec la droite projective réelle, le cercle unité et les points 0, 1,∞.

RP1

U

∞

0

1

4. Démontrer que pour a, b, c, d ∈ C, ad− bc 6= 0, la fonction

[z : w] 7→ [az + bw : cz + dw]

est bien définie et holomorphe sur CP1. On appelle homographie de CP1 toute application de cette
forme.
Il faut vérifier que le point obtenu ne dépend pas des coordonnées choisies. Deux options : soit on
remarque que l’application correspond à envoyer la droite L = [z : w] sur gL, où g est la matrice
correspondante, soit on remarque que la linéarité de l’application implique directement que [λz : λw] est
envoyé sur [λ(az + bw) : λ(cz + dw)].
Pour l’holomorphie, c’est vrai par définition d’une fonction holomorphe à valeurs dans CP1.

5. Vérifier la cohérence avec la définition des homographies sur des ouverts de C.
Si l’on pose w = 1, on trouve la formule

[z : 1] 7→ [az + b : cz + d] =

[
az + b

cz + d
: 1

]
.
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6. Expliciter une homographie qui envoie biholomorphiquement le disque unité D sur le demi-plan de
Poincaré H.
Indication : on cherchera une homographie qui envoie 1 sur 0 et −1 sur ∞.
Le choix d’envoyer 1 sur 0 et −1 sur l’infini donne une homographie de la forme a(z−1)

b(z+1) . On vérifie que

le choix a = −i, b = 1 envoie effectivement D sur H car elle envoie z = x+ iy sur 2y+i(1−|z|2)
1+|z|2+2x , qui est de

partie réelle positive si |z|2 < 1, et son inverse, donné par par z 7→ i−z
z+i envoie x+ iy sur

−x+ i(1− y)

x+ i(y + 1)

dont le module est < 1 si y > 0.

7. On note M(CP1) l’ensemble des applications holomorphes de CP1 dans lui-même. Démontrer que
l’application GL2(C)→M(CP1) donnée par[

a b
c d

]
7→
(
[z : w] 7→ [az + bw : cz + dw]

)
est compatible à la composition. En déduire que les homographies sont inversibles, et donner la formule
pour l’inverse. On note PGL2(C) l’image de cette application.
L’homographie associée à une matrice g correspond à L 7→ g ·L pour L droite complexe dans C2. Ainsi,[
a b
c d

]
7→ az+b

cz+d est compatible à la composition, et l’inverse de l’homographie est donnée par l’inverse

de la matrice associée.

8. Vérifier que la restriction de l’application précédente à SL2(C) est toujours PGL2(C).
Pour g ∈ GL2(C), g et λg donnent la même homographie. En particulier, en prenant ζ une racine carrée
du déterminant de g, on a ζ−1g ∈ SL2(C) qui est envoyé sur le même élément que g.

9. Calculer les noyaux des morphismes GL2(C)→ PGL2(C) et SL2(C)→ PGL2(C).
Supposons az+b

cz+d = z pour tout z. L’équivalence en l’infini nous donne a/d = 1, c = 0. En évaluant en 0,
on trouve b/d = 0, donc b = 0. On en conclut que la matrice correspondante est une homothétie.

Exercice 3. L’anneau des fonctions holomorphes sur un compact.
On considère, pour K ⊆ C un compact connexe infini (non-réduit à un singleton), l’ensemble O(K) des
fonctions f : K → C pour lesquelles il existe un voisinage V de K et une fonction analytique sur V dont la
restriction à K est f .

1. Expliciter O
(
D(0, R)

)
pour R > 0.

O
(
D(0, R)

)
est l’anneau des séries entières de rayon de convergence > R.

2. On va munir O(K) d’une structure d’anneau commutatif et vérifier quelques propriétés basiques.

(a) Démontrer que O(K) est un sous-anneau de l’anneau des fonctions (continues) de K dans C (c’est-
à-dire qu’il est stable par somme, produit, et qu’il contient 0 et 1).
0 et 1 sont clairement analytiques au voisinage de K. Si f, g sont deux fonctions définies sur K,
disons sur U et V , alors elles sont aussi définies sur U ∩ V , où leurs somme et produit existent.

(b) Vérifier que f ∈ O(K) est inversible si et seulement si elle ne s’annule pas sur K.
Soit f ∈ O(K) ne s’annulant pas sur K, définie sur un voisinage U de K. L’ensemble V (f) des zéros
de f est fermé dans U et disjoint de K. Par conséquent, U \V (f) est encore un voisinage ouvert de
K, et 1/f y est bien définie. Réciproquement, si fg = 1 sur K alors f ne s’annule clairement pas.

(c) Démontrer que O(K) est un anneau intègre, c’est-à-dire que si fg = 0 dans O(K), alors f = 0 ou
g = 0.
Soient f, g ∈ O(K) définies sur un même voisinage U de K. Comme K est connexe, il est contenu
dans une composante connexe de U , disons U0. Si fg est nul sur un ouvert connexe, nécessairement
f ou g est nul.
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(d) Démontrer que f est mutliple de g dans O(K) si et seulement si f s’annule partout où g s’annule,
et l’ordre d’annulation de f est supérieur à celui de g en ces points.
L’implication directe est claire, voyons la réciproque : Disons f, g définies sur un voisinage U , et
supposons que f et g ne s’annulent que dans K. Il suffit de vérifier que la fonction f/g s’étend
en une fonction analytique au voisinage de tout zéro de g. Pour cela, on développe f et g en série
entière, on a f(z) = (z−α)mf0(z) et g(z) = (z−α)lg0(z) avec m ≥ l. Ainsi, la fonction analytique
(z − α)m−lf0(z)/g0(z) est bien définie au voisinage de α, et coïncide avec f/g.

3. Soit I ⊆ O(K) un idéal non-nul. Démontrer que l’ensemble V (I) := {z ∈ K : ∀f ∈ I, f(z) = 0} est fini.
C’est le théorème des zéros isolés : si V (I) admet un point d’accumulation, alors V (f) admet un point
d’accumulation pour tout f ∈ I et donc f est nulle. V (I) est donc discret dans K, donc fini.
On note, pour α ∈ V (I), kα le minimum des ordres d’annulation de fonctions de I en α.

4. Démontrer que I est contenu dans l’idéal engendré par le polynôme
∏
α∈V (I)(z − α)kα .

Par définition, le polynôme choisi a des zéros inclus dans V (f) pour tout f ∈ I, et les multiplicités des
zéros du polynôme sont inférieures à celles de f , qui en est donc un multiple.

5. (a) Soit g ∈ O(K), α ∈ K un point de non-annulation de g et k > 1 un entier naturel. Démontrer qu’il
existe un polynôme s(z) ∈ C[z] tel qu’au voisinage de α, on aie s(z)f(z) = 1 + (z − α)k + ...

Indication : On pourra considérer le développement en série entière de 1+(z−α)k
g(z) au voisinage de α.

On considère le développement à l’ordre k + 1 de la fonction analytique u(z) = 1+(z−α)k
g(z) . Comme

u(z)g(z) = 1 + (z − α)k + ... et que les termes de degré 6 k de u(z)g(z) ne font intervenir que des
termes de degré 6 k de u et g, on a le résultat demandé.

(b) Soient α1, ..., αm ∈ K distincts, g une fonction analytique sur K ne s’annulant pas aux αi, k1, ..., km
des entiers > 1. Démontrer qu’il existe un polynôme S(z) tel que pour tout i, on aie au voisinage
de αi :

S(z)g(z) = 1 + (z − αi)ki + ...

On pose si(z) un polynôme qui vérifie que si(z)g(z)
∏
j 6=i (z − αj)kj+1

= 1 + (z − αi)ki + ..., et on
vérifie que

S(z) =

m∑
i=1

∏
j 6=i

(z − αj)kj+1
si(z)

convient.
(c) Soient f, g ∈ O(K) deux fonctions sans point d’annulation en commun. Montrer qu’il existe des

fonctions R,S ∈ O(K) telles que R(z)f(z) + S(z)g(z) = 1.
On considère le polynôme S obtenu ci-dessus pour αi les zéros de f et ki l’ordre d’annulation de f
en αi. Il reste alors seulement à vérifier que R(z) := 1−S(z)g(z)

f(z) est une fonction analytique sur K :
ça découle du fait que 1− S(z)g(z) est par construction un multiple de f .

6. Démontrer par récurrence que pour f1, ..., fm ∈ O(K), il existe une combinaison linéaire à coefficients
dans O(K) des fi qui s’annule précisément sur

⋂m
i=1 V (fi) et dont l’ordre d’annulation en α ∈

⋂m
i=1 V (fi)

est le minimum des ordres d’annulation des fi en α.
Commençons par m = 2 : en divisant f1 et f2 par le polynôme

P1(z) =
∏

α∈V (f1)∩V (f2)

(z − α)min
(
ordα(f1),ordα(f2)

)
on peut supposer qu’elles n’ont aucun zéro en commun. La question précédente donne R,S tels que
Rf1/P1 + Sf2/P1 = 1, d’où Rf1 + Sf2 = P1. Pour conclure la récurrence, il suffit de voir qu’avec le cas
m = 2 on peut se ramener de f1, f2, ..., fm à P1, ..., fm sans changer les minima d’ordres d’annulation.

7. Démontrer que O(K) est principal.
Soit I un idéal de O(K). On choisit pour chaque α ∈ K une fonction f ∈ I qui s’annule à l’ordre minimal
pour I en α. On rajoute des fonctions à cet ensemble jusqu’à avoir f1, ..., fm telles que

⋂
i V (fi) = V (I).

C’est possible car
⋂
f∈I V (f) = V (I), donc on peut toujours, pour α /∈ V (I), trouver une fonction dans

I qui ne s’annule pas en α. Il existe donc, par la question précédente, un polynôme P (z) ∈ O(K) qui
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s’annule exactement aux points de V (I) avec les multiplicités minimales, et par conséquent tout élément
de I est multiple de P , donc I = (P ).
Remarque : l’énoncé correspondant est faux pour O(U). En effet, étant donnée une suite (an)n sans point
d’accumulation, on peut définir l’idéal de O(U) des fonctions nulles sur an apcr. Avec un théorème qui
garantit l’existence de fonctions holomorphes de m premières dérivées prescrites sur un ensemble discret,
on peut prouver par des méthodes similaires à celles de cet exercice que cet idéal n’est pas principal.

Equations de Cauchy-Riemann

1 Equations de Cauchy-Riemann
Exercice 4. Les opérateurs ∂ et ∂.
On note ∂ et ∂ les opérateurs

∂ =
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
, ∂ =

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
1. Vérifier qu’une fonction différentiable (au sens réel) f : U → C vérifie les équations de Cauchy-Riemann

si et seulement si ∂f = 0.
On écrit f = u+ iv, et on calcule

2∂(f) =
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y
.

En séparant parties réelle et imaginaire, on retrouve exactement les équations de Cauchy-Riemann.

2. Vérifier que ∂ et ∂ vérifient la règle de Leibniz : pour f, g différentiables, on a ∂(fg) = f∂g + ∂fg, et
similairement pour ∂.
On peut voir qu’en toute généralité, si D,D′ vérifient la règle de Leibniz alors uD+ vD′ la vérifie aussi,
puisque

uD(fg) + vD′(fg) = uD(f)g + ufD(g) + vD′(f)g + vfD(g) = (uD + vD′)(f)g + f(uD + vD′)(g)

en réarrangeant les termes.

3. Ecrire le laplacien ∆ en fonction de ∂ et ∂, et montrer que si f est holomorphe alors |f |2 est sous-
harmonique, c’est-à-dire que ∆|f |2 > 0.
Pour le chemin le plus rapide, on peut être un peu malin.e et remarquer que |f |2 = ff , et f est
antiholomorphe. Ainsi :

∆ff = 4∂∂(ff)

= 4∂(f∂(f))

= 4∂(f)∂(f)

= 4|∂(f)|2

qui est positive, et nulle ssi f est constante.

4. Démontrer que pour f holomorphe, on a ∆f = 0, et donc les parties réelle et imaginaire de f sont
harmoniques. Donner un contre-exemple à la réciproque, c’est-à-dire une fonction harmonique sur un
ouvert de C qui n’est pas partie réelle d’une fonction holomorphe.
Indication : on pourra prouver qu’il n’existe pas de fonction continue θ : U→ R telle que eiθ(z) = z pour
tout z ∈ U.
∆ = 4∂∂ donc ∆f = 4∂∂f = 0. Comme ∆ préserve les parties réelles et imaginaires, on conclut
pour l’harmonicité de <(f). Pour le contre-exemple, commençons par prouver l’indication. Pour ce
faire, introduisons φ : U \ {−1} la fonction argument principal. C’est une fonction continue, qui vérifie
eiφ(z) = z pour tout z. Par conséquent, ei(θ(z)−φ(z) = 1 pour tout z ∈ U \ {−1}, et donc φ(z) = θ(z)
mod 2π pour tout z. Comme φ et θ sont continues et que 2πZ est discret, φ − θ est constante à 2kπ.
Comme φ ne peut pas se prolonger en une fonction continue sur U, θ = φ+ 2kπ ne peut pas non plus.
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Maintenant, considérons la fonction z 7→ log |z| sur C∗ : elle est effectivement harmonique. Supposons
qu’il existe L : C∗ → C holomorphe dont la partie réelle est log |z|. Comme L est holomorphe, les
équations de Cauchy-Riemann nous assurent que L est, à constante imaginaire près, une détermination
du logarithme sur C∗. Une telle détermination a pour partie imaginaire une détermination continue de
l’argument sur C∗, qui n’existe pas.

5. En déduire que si f ne s’annule pas, log |f | est harmonique. De même, si une détermination de arg(f)
existe, démontrer qu’elle est harmonique.
On vérifie que si une détermination de log(f) existe sur un ouvert V ⊆ U , alors sa partie réelle est log |f |
est sa partie imaginaire est arg(f). Pour l’existence d’une telle détermination localement au voisinage
d’un point a ∈ U , il suffit de considérer un disque D suffisamment petit autour de a de sorte que f(D)
soit contenu dans le voisinage de f(a) sur lequel un log complexe est défini. De là, log(f(z)) est défini
comme fonction holomorphe et on a que log |f | est harmonique en a, donc harmonique globalement.

Exercice 5. Somme et produit réels.
On fixe un ouvert connexe U de C.

1. Soient f, g ∈ O(U) telles que f(z) + g(z) ∈ R pour tout z ∈ U . Montrer que f = g + c avec c une
constante réelle.
On pose h = f − g. On a

2i=(h) = f − g − f + g = f + g − f + g.

Comme f + g est à valeurs réelles, =(h) est identifiquement nulle, ce qui garantit que <(h) est constante
par Cauchy-Riemann.

2. Soient f, g ∈ O(U), avec g inversible. Supposons que f(z)g(z) ∈ R pour tout z ∈ U . Montrer que f = cg
avec c une constante réelle.
On pose h = f/g = fg

|g|2 , donc h est à valeurs réelles et elle est donc constante.

Exercice 6. Cauchy-Riemann polaire. Soit f une fonction holomorphe définie au voisinage de 0 ∈ C. On
écrit f(reiθ) = u(r, θ) + iv(r, θ). Montrer que les équations de Cauchy-Riemann se réécrivent{

∂θu = −r∂rv
r∂ru = ∂θv

.

On travaille en coordonnées z, z au lieu de x, y, et on écrit z = reiθ, z = re−iθ.
On calcule alors que si ∂f = 0, on a par la règle de la chaîne :

∂rf(reiθ) = (∂f)(reiθ)eiθ + (∂f)(reiθ)e−iθ = (∂f)(reiθ)eiθ

et
∂θf(reiθ) = (∂f)(reiθ)ireiθ − (∂f)(reiθ)ire−iθ = (∂f)(reiθ)ireiθ.

On en conclut que ∂θf = ir∂rf , ce qui donne l’égalité voulue en isolant partie réelle et imaginaire.

Exercice 7. Les opérateurs ∂ et ∂ par l’algèbre linéaire.
Soit V un C-espace vectoriel de dimension finie, etW = HomR(V,C). On considère l’endomorphisme R-linéaire
J : W →W donné par f 7→ (v 7→ f(iv)), et on voit W comme un C-espace vectoriel par (λ · ϕ)(w) = λϕ(w).

1. Vérifier que J n’est pas la multiplication par i.
On peut considérer une forme R-linéaire f (à valeurs dans R) sur V : elle n’est clairement pas C-linéaire
et donc f(Jv) 6= if(v).

2. Vérifier que J est diagonlisable sur W et expliciter les projections sur les espaces propres de valeurs
propres i et −i, que l’on note W 1,0 et W 0,1.
J2 + 1 = 0 donc J est diagonalisable. La projection sur W 1,0 est donnée par v 7→ v − iJv et celle sur
W 0,1 par v 7→ v + iJv.

3. Intepréter W 1,0 et W 0,1 en terme de C-linéarité, et vérifier que W 0,1 = W 1,0 (conjugué complexe).
W 1,0 et le sous-espace vectoriel des formes C-linéaires, et W 0,1 celui des formes C-semilinéaires (ϕ(zv) =
zϕ(v)).
Soient à présent U un ouvert de C et f : U → C une fonction différentiable au sens réel. On fixe un
point p ∈ U .
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4. Appliquer la décomposition de l’exercice à l’application R-linéaire dpf : C → C et retrouver les expres-
sions de ∂f

∂z et ∂f
∂z en fonction de ∂f

∂x et ∂f
∂y en décomposant dpf dans les C-bases dx, dy et dz, dz de

HomR(C,C).
Les coordonnées de df dans la base dx, dy sont ∂f

∂x et ∂f
∂y . La projection de cette base sur les sous-espaces

propres donne dz = dx + idy, dz = dx − idy, et les coordonnées de df dans cette base sont bien ∂f et
∂f . Pour le voir, il suffit d’écrire la matrice de la base dz, dz dans la base dx, dy, c’est la matrice[

1 1
i −i

]
.

Les coordonnées de df dans la base dz, dz sont obtenues en appliquant l’inverse de cette matrice, c’est-
à-dire

1

2

[
1 −i
1 i

]
au vecteur

(
∂f
∂x ,

∂f
∂y

)
.

Exercice 8. Fonctions holomorphes en plusieurs variables.
On définit, sur Cn, les opérateurs

∂j =
∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
, ∂j =

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

On écrit dzj = dxj + idyj , et dzj = dxj − idyj , et on fixe un ouvert U de Cn.

1. Vérifier que pour f : U → C différentiable, on a

df =

n∑
j=1

∂j(f)dzj + ∂j(f)dzj .

On décompose

df =
∑
j

∂f

∂xj
dxj +

∂f

∂yj
dyj .

La définition de ∂j , ∂j et dzj , dzj nous assure alors que :

∂f

∂xj
dxj +

∂f

∂yj
dyj = ∂j(f)dzj + ∂j(f)dzj .

On dit qu’une fonction f : U → C est holomorphe si df est C-linéaire.

2. Vérifier que cette condition est équivalente à ∂j(f) = 0 pour tout j.∑
j ∂j(f)dzj est la partie C-antilinéaire de df , donc df est C-linéaire si et seulement si elle est nulle, ce

qui revient à ∂jf = 0 pour tout j.

3. Ecrire le laplacien en dimension 2n en fonction des ∂j , ∂j . En déduire que les parties réelle et imaginaire
des fonctions holomorphes en plusieurs variables sont harmoniques, et que |f |2 est sous-harmonique.

∆ = 4
∑
j

∂j∂j .

Il en découle que pour f holomorphe, ∆f est nul (car ∂jf est nul). On prouve, similairement à l’exercice
1, que

∆|f |2 =
∑
j

|∂jf |2

en écrivant |f |2 = ff .
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4. Prouver qu’en fait, la partie réelle d’une fonction holomorphe vérifie les équations ∂j∂ku = 0 pour tous
j, k.
Comme ∂kf = 0, on a nécessairement ∂j∂kf = 0. Comme ∂j∂k = ∂k∂j , on a ∂k∂jf = 0. En sommant
les égalités, on obtient 2∂j∂k<(f) = 0, et en soustrayant on obtient 2i∂j∂k=(f) = 0.

5. Trouver une fonction harmonique u : C2 → R qui n’est, même localement, pas la partie réelle d’une
fonction holomorphe.
La piste pour trouver une fonction harmonique qui ne satisfait pas à ces équations est claire : on peut
chercher u : C2 → R telle que ∂1∂1u = −∂2∂2u mais ∂1∂1u 6= 0 (ce qui serait nécessaire pour être
localement la partie réelle d’une fonction holomorphe).
On peut par exemple prendre u(z1, z2) = <(z1)2 −<(z2)2 qui vérifie

4∂1∂1u = 1, 4∂2∂2u = −1.
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