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Les exercices marqués d’un L9t sont 4 faire en priorité, ceux marqués d’un €t sont des exercices complémen-
taires, & faire pour aller plus loin.

Quelques fonctions holomorphes

59 Exercice 1. Le logarithme complexe.

On définit la série entiére
(_1)n+1 n
log(1+2) = E - "

n
n>1

1. Démontrer 1’égalité de séries entiéres
exp(log(l+42)) =1+ z.

C’est une conséquence des régles de composition des développements limités. Pour une preuve plus self-
. - log(1+2
contained, on peut dériver w

on calcule

I : \ s 1a dérivée de ot L is
. D’abord, on observe que la dérivée de log(1 + z) est T buis

% (1 Jlr z exp(log(l + Z))) 1 i z eXp((l‘;ng;' o (1 Jrlz)z exp(log(l +2)) = 0.

Par conséquent, exp(log(1 + z)) = C(1 + z) pour une constante C'. En considérant les termes constants,
on trouve que C' = 1.

2. Soit zg € C* et wy € C tel que e° = z3. Démontrer que la série entiére

Ly (2) = wo + log <1+ Z_z°>
20

définit une fonction analytique sur D(zo, |2o|) qui vérifie efwo(*) = 2.

2”20
Z0

Comme log(1+ z) converge sur (0, 1), la série entiére log (1 + > converge pour |z — zg| < |2o]|, donc
sur D(zo, |20|). Pour I'égalité elwo(*) = 2, on part du fait que exp(log(1+ 2)) = 1 + z en tant que séries

entiéres, donc exp(log(1 + z)) = 1 4 z pour tout |z| < 1. Par conséquent,

Z— 2
61"w0(3)—ew0'<1+ ()) =20t+2—%2 =%

z

L(z) _

3. On appelle détermination locale du logarithme sur un ouvert U une fonction L : U — C vérifiant e z

pour tout z.

(a) Soit U un ouvert connexe de C* et f,g : U — C deux déterminations continues du logarithme.
Démontrer que f — g est constante & 2ik.
On vérifie que exp(f(z) — g(2)) = exp(f(2))/exp(g(z)) = z/z = 1. Ainsi, f — g est a valeur dans
2imZ. Etant continue, elle est constante.

(b) En déduire que toute détermination continue du logarithme est holomorphe.
Soit L une détermination du logarithme sur U connexe. L’holomorphie est une propriété locale
soit @ € U, et D un disque contenu dans U centré en a : on va prouver que L est holomorphe sur
U. Comme 0 ¢ U, le rayon de D est inférieur & |a| et par conséquent il existe une détermination
holomorphe du logarithme au voisinage de @ : on choisit b tel que e’ = a et on considére L. En
appliquant la question précédente a 'ouvert D, on trouve que L; et L différent d’une constante sur
D, et donc L est holomorphe sur D, ce qui conclut.

TMerci a4 Hadrien et Louise pour ce phoque et ce raton-laveur en Tikz.



4. Soit L une détermination du logarithme sur un ouvert U. Démontrer que RL(z) = log|z| et que SL(z)
est une détermination de I'argument sur U.

On observe que |e| = e®™®), Par conséquent, |z| = [eX(*)] = ®L(2) donc RL(2) = log|z|. On en déduit
également que ¢SL(2) = \%I" donc SL(z) est un argument de z.

& Exercice 2. La sphére de Riemann comme espace projectif et ’action de PGL,.
On note CP! I’ensemble des droites complexes dans C2. Si (u,v) € C? est non nul, on note [u : v] la droite
qu’il engendre, et on a [Au : Av] = [u : v] pour A € C*.

1. Vérifier que C s’injecte dans CP! en envoyant z sur [z : 1].
Sifz:1] =[7 :1] alors z/1 = 2//1.

2. Vérifier que CP! \ C est réduit & un point, la droite [1 : 0], que I’on note oo.

Si (u,v) € C?\ {0}, alors soit v # 0 auquel cas [u : v] = [u/v : 1], soit v = 0, auquel cas [u : v] = [u :
0]=1[1:0].

Ainsi, CP! s’identifie naturellement au compactifié d’Alexandroff du plan : la sphére. On le munit de
cette topologie. Si U C CP! est un ouvert contenant l'infini et f : U — C est une fonction, on dit que
f est holomorphe si elle est holomorphe au voisinage de tout point non-infini et si z — f([1 : 2]) est
holomorphe au voisinage de zéro (moralement, z — f(1/z) est holomorphe au voisinage de zéro). Si
f: U — CP* est une fonction, on dit qu’elle est holomorphe si elle est de la forme [u(z) : v(z)] avec u,v
fonctions holomorphes.

3. Dessiner RP!, le disque unité et le demi-plan de Poincaré sur CP!.
Pour fixer les idées, disons que oo est le pole nord et 0 est le pole sud. Alors RP!' est un grand cercle
qui passe par 0 et oo, le disque unité est I’hémisphére sud de la sphére, et le demi-plan de Poincaré est
un des deux hémisphéres (celui qui contient 7, au choix) délimités par le cercle RP!. Ci-dessous, CP* est
représenté avec la droite projective réelle, le cercle unité et les points 0, 1, co.

4. Démontrer que pour a,b,c,d € C, ad — be # 0, la fonction
[z :w] = [az + bw : ¢z + dw]

est bien définie et holomorphe sur CP'. On appelle homographie de CP' toute application de cette

forme.
Il faut vérifier que le point obtenu ne dépend pas des coordonnées choisies. Deux options : soit on
remarque que lapplication correspond a envoyer la droite L = [z : w] sur gL, oi g est la matrice

correspondante, soit on remarque que la linéarité de 'application implique directement que [Az : Adw] est
envoyé sur [A(az + bw) : AMcz + dw)].
Pour I’holomorphie, c’est vrai par définition d'une fonction holomorphe & valeurs dans CP!.

5. Vérifier la cohérence avec la définition des homographies sur des ouverts de C.
Si 'on pose w = 1, on trouve la formule

[2:1 > [az4+b:eztd = {“Z“’q}

cz+d -’



6. Expliciter une homographie qui envoie biholomorphiquement le disque unité I sur le demi-plan de
Poincaré H.
Indication : on cherchera une homographie qui envoie 1 sur 0 et —1 sur co.
Zéz:)) On vérifie que
2y+i(1—|z|?)
_ 1+|z]2+2z
1—Z

partie réelle positive si |z|? < 1, et son inverse, donné par par z ~7; envoie x + iy sur

Le choix d’envoyer 1 sur 0 et —1 sur 'infini donne une homographie de la forme
le choix a = —i,b = 1 envoie effectivement D sur H car elle envoie z = x + iy sur qui est de

—z+i(l—y)
x+ily+1)

dont le module est < 1 siy > 0.

7. On note M(CP') Pensemble des applications holomorphes de CP' dans lui-méme. Démontrer que
I'application GL3(C) — M(CP!) donnée par

a b
[c d] = ([zrw] = Jaz + bw cz—l—dw])
est compatible & la composition. En déduire que les homographies sont inversibles, et donner la formule
pour l'inverse. On note PGLy(C) I'image de cette application.

L’homographie associée a4 une matrice g correspond & L + ¢ - L pour L droite complexe dans C2. Ainsi,

a b . R .. . . , .
L d} — ffj_g est compatible & la composition, et I'inverse de I’homographie est donnée par 'inverse

de la matrice associée.

8. Vérifier que la restriction de lapplication précédente a SLy(C) est toujours PGLy(C).
Pour g € GL2(C), g et Ag donnent la méme homographie. En particulier, en prenant ¢ une racine carrée
du déterminant de g, on a ("'g € SLy(C) qui est envoyé sur le méme élément que g.

9. Calculer les noyaux des morphismes GLy(C) — PGL2(C) et SL2(C) — PGL2(C).
Supposons % = z pour tout z. L’équivalence en l'infini nous donne a/d = 1,¢ = 0. En évaluant en 0,
on trouve b/d = 0, donc b = 0. On en conclut que la matrice correspondante est une homothétie.

& Exercice 3. L’anneau des fonctions holomorphes sur un compact.
On considére, pour K C C un compact connexe infini (non-réduit a un singleton), I’ensemble O(K) des
fonctions f : K — C pour lesquelles il existe un voisinage V' de K et une fonction analytique sur V dont la
restriction & K est f.

1. Expliciter O(E(O, R)) pour R > 0.
O(E(O, R)) est "anneau des séries entiéres de rayon de convergence > R.

2. On va munir O(K) d’une structure d’anneau commutatif et vérifier quelques propriétés basiques.

(a) Démontrer que O(K) est un sous-anneau de 'anneau des fonctions (continues) de K dans C (c’est-
a-dire qu’il est stable par somme, produit, et qu’il contient 0 et 1).
0 et 1 sont clairement analytiques au voisinage de K. Si f, g sont deux fonctions définies sur K,
disons sur U et V, alors elles sont aussi définies sur U NV, ot leurs somme et produit existent.

(b) Vérifier que f € O(K) est inversible si et seulement si elle ne s’annule pas sur K.
Soit f € O(K) ne s’annulant pas sur K, définie sur un voisinage U de K. L’ensemble V(f) des zéros
de f est fermé dans U et disjoint de K. Par conséquent, U\ V(f) est encore un voisinage ouvert de
K, et 1/f y est bien définie. Réciproquement, si fg =1 sur K alors f ne s’annule clairement pas.

(c) Démontrer que O(K) est un anneau intégre, c’est-a-dire que si fg = 0 dans O(K), alors f = 0 ou
g=0.
Soient f,g € O(K) définies sur un méme voisinage U de K. Comme K est connexe, il est contenu
dans une composante connexe de U, disons Uy. Si fg est nul sur un ouvert connexe, nécessairement
f ou g est nul.



3.

5.

6.

(d) Démontrer que f est mutliple de g dans O(K) si et seulement si f s’annule partout ou g s’annule,
et ordre d’annulation de f est supérieur a celui de g en ces points.
L’implication directe est claire, voyons la réciproque : Disons f, g définies sur un voisinage U, et
supposons que f et g ne s’annulent que dans K. Il suffit de vérifier que la fonction f/g s’étend
en une fonction analytique au voisinage de tout zéro de g. Pour cela, on développe [ et g en série
entiére, on a f(z) = (z — )™ fo(2) et g(2) = (2 — a)'go(z) avec m > I. Ainsi, la fonction analytique
(z — @)™ fs(2)/go(2) est bien définie au voisinage de o, et coincide avec f/g.

Soit I C O(K) un idéal non-nul. Démontrer que 'ensemble V(I) :={z € K : Vf € I, f(z) = 0} est fini.
C’est le théoreme des zéros isolés : si V/(I) admet un point d’accumulation, alors V(f) admet un point
d’accumulation pour tout f € I et donc f est nulle. V(1) est donc discret dans K, donc fini.

On note, pour « € V(I), ko le minimum des ordres d’annulation de fonctions de I en a.

. Démontrer que I est contenu dans I'idéal engendré par le polynome [,y (7 (2 — a)ke.

Par définition, le polynome choisi a des zéros inclus dans V() pour tout f € I, et les multiplicités des
zéros du polynome sont inférieures a celles de f, qui en est donc un multiple.

(a) Soit g € O(K), a € K un point de non-annulation de g et k£ > 1 un entier naturel. Démontrer qu’il
existe un polynome s(z) € C[z] tel qu’au voisinage de «, on aie s(2)f(z) =1+ (z — @)k + ...

k
Indication : On pourra considérer le développement en série entiére de % au voisinage de .
k
On considére le développement a l'ordre k + 1 de la fonction analytique u(z) = % Comme

w(2)g(z) =1+ (2 — a)¥ + ... et que les termes de degré < k de u(z)g(z) ne font intervenir que des
termes de degré < k de u et g, on a le résultat demandé.

(b) Soient ay, ..., ay, € K distincts, g une fonction analytique sur K ne s’annulant pas aux o, ki, ..., km
des entiers > 1. Démontrer qu’il existe un polyndéme S(z) tel que pour tout 4, on aie au voisinage
de «; :

S(2)g(z) =1+ (2 —ay)k + ..

kj+1

On pose s;(z) un polynome qui vérifie que s;(2)g(2) [[;, (= — o) =1+ (2—a;)* + ..., et on

vérifie que
m

S2) =Y [[(z— )" si(2)
i=1 j#i
convient.

(¢) Soient f,g € O(K) deux fonctions sans point d’annulation en commun. Montrer qu’il existe des
fonctions R, S € O(K) telles que R(2)f(z) + S(z)g(z) = 1.
On consideére le polyndéme S obtenu ci-dessus pour «; les zéros de f et k; 'ordre d’annulation de f

en «;. Il reste alors seulement & vérifier que R(z) := % est une fonction analytique sur K :

¢a découle du fait que 1 — S(z)g(z) est par construction un multiple de f.

Démontrer par récurrence que pour fi,..., fm € O(K), il existe une combinaison linéaire a coefficients
dans O(K) des f; qui s’annule précisément sur (-, V(f;) et dont 'ordre d’annulation en o € (2, V/(f;)
est le minimum des ordres d’annulation des f; en a.

Commengons par m = 2 : en divisant f; et fo par le polyndéme

P = [[ (s - aymin (datmondatr)
acV(f1)NV(f2)

on peut supposer qu’elles n’ont aucun zéro en commun. La question précédente donne R, S tels que
Rfi/Pi+ Sfa/Pr =1, don Rfy + Sfa = P;. Pour conclure la récurrence, il suffit de voir qu’avec le cas
m = 2 on peut se ramener de f1, fa, ..., fimm & Py, ..., fy, sans changer les minima d’ordres d’annulation.

Démontrer que O(K) est principal.

Soit I un idéal de O(K). On choisit pour chaque o € K une fonction f € I qui s’annule a I’ordre minimal
pour I en a. On rajoute des fonctions a cet ensemble jusqu’a avoir fi, ..., fm telles que (), V(f;) = V(I).
C’est possible car ﬂfel V(f) =V (I), donc on peut toujours, pour a ¢ V(I), trouver une fonction dans
I qui ne s’annule pas en «. Il existe donc, par la question précédente, un polynome P(z) € O(K) qui



s’annule exactement aux points de V(1) avec les multiplicités minimales, et par conséquent tout élément
de I est multiple de P, donc I = (P).

Remarque : 1’énoncé correspondant est fauz pour O(U). En effet, étant donnée une suite (ay,), sans point
d’accumulation, on peut définir l'idéal de O(U) des fonctions nulles sur a,, aper. Avec un théoréme qui
garantit ’existence de fonctions holomorphes de m premiéres dérivées prescrites sur un ensemble discret,
on peut prouver par des méthodes similaires a celles de cet exercice que cet idéal n’est pas principal.

Equations de Cauchy-Riemann

1 Equations de Cauchy-Riemann

£Y Exercice 4. Les opérateurs 0 et 0.
On note 0 et 0 les opérateurs

o 1[0 .0\ 0 1(0 .0
O=—=-|—-i—),0=—===|—+i—
0z 2 \0x 0Oy 0z 2 \0x Oy
1. Vérifier qu'une fonction différentiable (au sens réel) f : U — C vérifie les équations de Cauchy-Riemann
si et seulement si 9f = 0.
On écrit f = u + iv, et on calcule
_Ou  Ov  Odu  Ov

j— — —

20(f) = — +i— .
o(f) 8I+Za$ dy Oy

En séparant parties réelle et imaginaire, on retrouve exactement les équations de Cauchy-Riemann.

2. Vérifier que 0 et 0 vérifient la régle de Leibniz : pour f, g différentiables, on a d(fg) = f0g + dfg, et
similairement pour 0.
On peut voir qu’en toute généralité, si D, D’ vérifient la régle de Leibniz alors uD + v D’ la vérifie aussi,
puisque

uD(fg) +vD'(fg) = uD(f)g + ufD(g) + vD'(f)g + vfD(g) = (uD + vD")(f)g + f(uD + vD')(g)

en réarrangeant les termes.

3. Ecrire le laplacien A en fonction de d et 0, et montrer que si f est holomorphe alors |f|? est sous-
harmonique, c’est-a-dire que A|f|? > 0.
Pour le chemin le plus rapide, on peut étre un peu malin.e et remarquer que |f|? = ff, et f est
antiholomorphe. Ainsi :

qui est positive, et nulle ssi f est constante.

4. Démontrer que pour f holomorphe, on a Af = 0, et donc les parties réelle et imaginaire de f sont
harmoniques. Donner un contre-exemple & la réciproque, c’est-a-dire une fonction harmonique sur un
ouvert de C qui n’est pas partie réelle d’une fonction holomorphe.

Indication : on pourra prouver qu’il n’existe pas de fonction continue 8 : U — R telle que e
tout z € U.

A = 400 donc Af = 490f = 0. Comme A préserve les parties réelles et imaginaires, on conclut
pour 'harmonicité de R(f). Pour le contre-exemple, commengons par prouver Uindication. Pour ce
faire, introduisons ¢ : U\ {—1} la fonction argument principal. C’est une fonction continue, qui vérifie
¢?(2) = 2 pour tout z. Par conséquent, e!(?()=%() = 1 pour tout z € U\ {—1}, et donc ¢(z) = 6(2)
mod 27 pour tout z. Comme ¢ et 6 sont continues et que 277Z est discret, ¢ — 6 est constante a 2kw.
Comme ¢ ne peut pas se prolonger en une fonction continue sur U, 8 = ¢ + 2k7 ne peut pas non plus.

0(2) = 2 pour



Maintenant, considérons la fonction z — log|z| sur C* : elle est effectivement harmonique. Supposons
qu’il existe L : C* — C holomorphe dont la partie réelle est log|z|. Comme L est holomorphe, les
équations de Cauchy-Riemann nous assurent que L est, & constante imaginaire prés, une détermination
du logarithme sur C*. Une telle détermination a pour partie imaginaire une détermination continue de
P’argument sur C*, qui n’existe pas.

5. En déduire que si f ne s’annule pas, log|f| est harmonique. De méme, si une détermination de arg(f)
existe, démontrer qu’elle est harmonique.
On vérifie que si une détermination de log(f) existe sur un ouvert V' C U, alors sa partie réelle est log | f|
est sa partie imaginaire est arg(f). Pour l'existence d’une telle détermination localement au voisinage
d’un point a € U, il suffit de considérer un disque D suffisamment petit autour de a de sorte que f(D)
soit contenu dans le voisinage de f(a) sur lequel un log complexe est défini. De 1a, log(f(z)) est défini
comme fonction holomorphe et on a que log | f| est harmonique en a, donc harmonique globalement.

Exercice 5. Somme et produit réels.
On fixe un ouvert connexe U de C.

1. Soient f,g € O(U) telles que f(z) + g(z) € R pour tout z € U. Montrer que f = g 4 ¢ avec ¢ une
constante réelle.
Onpose h=f—g. On a
2i8h)=f-9g—-f+9=Ff+9—-f+7
Comme f +7 est a valeurs réelles, S(h) est identifiquement nulle, ce qui garantit que R(h) est constante
par Cauchy-Riemann.

2. Soient f,g € O(U), avec g inversible. Supposons que f(z)g(z) € R pour tout z € U. Montrer que f = cg
avec ¢ une constante réelle.
On pose h = f/g = IZTIQQ’ donc h est a valeurs réelles et elle est donc constante.

Exercice 6. Cauchy-Riemann polaire. Soit f une fonction holomorphe définie au voisinage de 0 € C. On
écrit f(re?) = u(r,0) +iv(r,0). Montrer que les équations de Cauchy-Riemann se réécrivent

Ot = —10,v
rOu = Ogv
On travaille en coordonnées z,Z au lieu de z,y, et on écrit z = re’?, 7 = re~%.

On calcule alors que si df = 0, on a par la régle de la chaine :
0, f(re’®) = (0f)(re)e” + (0f ) (re”)e ™" = (0f)(re”)e”

et
Do f(re') = (0f)(re')ire®® — (9f)(re?)ire™ = (9f)(re?)ire'.

On en conclut que 9y f = ird, f, ce qui donne ’égalité voulue en isolant partie réelle et imaginaire.

Exercice 7. Les opérateurs 0 et 0 par 1’algébre linéaire.
Soit V' un C-espace vectoriel de dimension finie, et W = Homg (V, C). On considére 'endomorphisme R-linéaire
J: W — W donné par f +— (v — f(iv)), et on voit W comme un C-espace vectoriel par (A - ¢)(w) = Ap(w).

1. Vérifier que J n’est pas la multiplication par i.
On peut considérer une forme R-linéaire f (& valeurs dans R) sur V' : elle n’est clairement pas C-linéaire

et donc f(Jv) #£if(v).

2. Vérifier que J est diagonlisable sur W et expliciter les projections sur les espaces propres de valeurs
propres i et —i, que I’on note W10 et W01,
J? +1 = 0 donc J est diagonalisable. La projection sur W0 est donnée par v — v — iJuv et celle sur
WOl par v+ v +iJo.

3. Intepréter W10 et W' en terme de C-linéarité, et vérifier que W0 = W10 (conjugué complexe).
WLO et le sous-espace vectoriel des formes C-linéaires, et W% celui des formes C-semilinéaires (p(zv) =
Zp(v)).

Soient & présent U un ouvert de C et f : U — C une fonction différentiable au sens réel. On fixe un
point p € U.



4. Appliquer la décomposition de I’exercice a 'application R-linéaire d, f : C — C et retrouver les expres-
sions de %f et %g en fonction de %ﬁ et %[ en décomposant d,f dans les C-bases dz,dy et dz,dz de
Yy
Homg (C, C).

Les coordonnées de df dans la base dx, dy sont % et g% La projection de cette base sur les sous-espaces

propres donne dz = dx + idy,dz = dx — idy, et les coordonnées de df dans cette base sont bien Jf et
df. Pour le voir, il suffit d’écrire la matrice de la base dz, dz dans la base dz, dy, c’est la matrice

)

Les coordonnées de df dans la base dz,dZ sont obtenues en appliquant 'inverse de cette matrice, c’est-

a-dire
LT —i
211 i

¢ Exercice 8. Fonctions holomorphes en plusieurs variables.
On définit, sur C™, les opérateurs

g2 _L(O0 ;905 0 1[0 ;0
j_azj_Z axj 8yj ’J_azj_Z 8$j ayj '

On écrit dz; = dx; + idy;, et dz; = dx; — idy;, et on fixe un ouvert U de C™.

. ) - (9f of
au vecteur (aw ay)

1. Vérifier que pour f: U — C différentiable, on a

df = 0;(f)dz; + 0;(f)dz;.
=1

On décompose

of of
df = Z Tjdxj + alfgjdyj.

La définition de 9;, 5‘7‘ et dz;,dz; nous assure alors que :
of of

%dwg‘ + T%dyj = 0;(f)dz; + 0,(f)dz;.

On dit qu’une fonction f : U — C est holomorphe si df est C-linéaire.

2. Veérifier que cette condition est équivalente a 9;(f) = 0 pour tout j.
> ; 0;(f)dz; est la partie C-antilinéaire de df, donc df est C-linéaire si et seulement si elle est nulle, ce

qui revient & Ejf = 0 pour tout j.

3. Ecrire le laplacien en dimension 2n en fonction des 8]',5]'. En déduire que les parties réelle et imaginaire
des fonctions holomorphes en plusieurs variables sont harmoniques, et que |f|? est sous-harmonique.

A=4)"0;0;.
J

Il en découle que pour f holomorphe, Af est nul (car d; f est nul). On prouve, similairement a I'exercice
1, que

AP =10 £
7

en écrivant |f|2 = ff.



4. Prouver qu’en fait, la partie réelle d’une fonction holomorphe vérifie les équations 6j5ku = 0 pour tous
gk B - -
Comme 9 f = 0, on a nécessairement 9;0; f = 0. Comme 9;0; = 9x0;, on a J;.0;f = 0. En sommant
les égalités, on obtient 20;0,R(f) = 0, et en soustrayant on obtient 2:0;0,3(f) = 0.

5. Trouver une fonction harmonique v : C> — R qui n’est, méme localement, pas la partie réelle d’une
fonction holomorphe.
La piste pour trouver une fonction harmonique qui ne satisfait pas & ces équations est claire : on peut
chercher v : C2 — R telle que 0,01u = —d202u mais 0101u # 0 (ce qui serait nécessaire pour étre
localement la partie réelle d’une fonction holomorphe).
On peut par exemple prendre u(z1, 22) = R(21)? — R(22)? qui vérifie

4815111 = 1, 48252’11 =—1.
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